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Abstract

We combine two recent credit risk models with the Marshall-Olkin setup to capture

the dependence structure of bivariate survival functions. The main advantage of this

approach is to handle fatal shock events in the dependence structure since these two

credit risk models allow to match the time of death of an individual with a catastrophe

time event. We also provide a methodology for adding other sources of dependency

in our approach. In such setup, we derive the no-arbitrage prices of some common life

insurance product for coupled lives. We demonstrate the performance of our method

by investigating Sibuya’s dependence function. Calibration is done on the data of joint

life contracts from a Canadian company.

Keywords— Credit risk, Dependence structure, Fatal shock events, Common life insurance

1 Introduction

1.1 Context

A joint membership contract in life insurance is a policy taken out by members of a married couple.

This contract allows holders to protect themselves against their risk of death. However, the co-

insureds can choose at the time of subscription the event that may result in the termination of the

contract. The latter revolves around two options. Either on the death of one of the members of

the couple, the capital thus accrued returns to the beneficiary of the contract, who in most cases is

the surviving spouse. Either on the death of the next spouse and in this case, the contract remains

∗
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open after the death of one of the co-members. However, even if this technique, allowing to open a

single contract in the name of two people, presents a high number of advantages on the side of the

insured, it is not so on the side of the insurer in a specific context linked the estimate of the couple’s

probability of death. Most models for estimating these probabilities are based on the independence

hypothesis of the joint death times. Nevertheless, it has been shown that there is a dependency

structure in the joint law of these times (see e.g., [5] and the literature their in). This dependence

can be explained by the so-called broken-heart syndrome or by some others phenomena such as

catastrophic exogenous events which may lead to the simultaneous death of the spouses.

Following the suggestion of Artzner and Delbaen [1], Milevsky and Promislow [23] is the

first paper to recognize a parallel between reduced-form credit risk models and continuous-time

mortality. The subsequent literature builds on this parallel to produce a variety of continuous-time

mortality models that fits well the observed mortality patterns and where actuarial quantities and

mortality derivatives can be more or less easily priced. Some existing work using the credit risk

approach in life insurance modelling can be seen for example in [4], [21], etc...

This parallelism also allows many authors to model joint mortality of coupled lives. Dependence

random time models have been developed in the literature of credit risk and life insurance. Some of

these models are based on copulas (see e.g., [5, 27] ) and common shock approaches (see, e.g, [18, 17,

16] ) which allow handling correlation between lifetimes through the hypothesis that dependency

is caused by external shock affecting both spouses. Others are based on the markovian approaches

(see e.g., [12, 25] ) for capturing the state change in the couple’s lifetimes. This last allows taking into

account the broken-heart syndrome. Among the most successful attempts, [14] develop a bivariate

model for mortality by combining markovian copula approaches to handle the set of effects related

to the broken-heart syndrome. Their idea is based on the disadvantages of both the markovian

and copula approaches. Indeed, using copula is difficult when implementing dynamic modelling

while the markovian approach fails to show the dependency between the lifetimes of a couple([14]).

Two recent contributions ([9, 10]) extend the literature of joint mortality modelling by introducing a

modelling framework in which the dependence structure is due to a copula function and a random

fatal shock that causes the death of both annuitants. This second source of dependence is known

as Marshall-Olkin. However, the modelling framework of [9, 10] is valid only when the mortality is

thought as a time-independent phenomenon.

In this paper, we insist on the parallel between reduced-form credit risk models and stochastic

mortality. We build two hybrid general class of models by combining the Generalized Cox [11] and

Generalized Jiao and Li models [11] with Marshall-Olkin approach. Our modelling framework

turns out to be quite flexible and easy to apply, as new models incorporating Marshall-Olkin-like

dependence structure can be built on top of already existing models. In addition, it accommodates

the stochastic nature of mortality in a straightforwardly manner. No-arbitrage pricing of classical

life-insurance products on two heads is also relatively easy.

The layout of the paper is as follows. In the following subsection, we describe the theoretical

background that leads to our modelling framework. In Section 2, we construct a general model

of joint mortality based on the approach of Marshall-Olkin. We then specialize the two hybrid

models and derive the survival functions. The no-arbitrage pricing of common life-insurance

products under the Generalized Cox model is carried out in Section 3. Section 4 reports a numerical
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application based on the well-known Canadian dataset and Section 5 concludes.

1.2 Motivations

All the literature of the parallelism of these two approaches shares the same spirit, as explained

below.

The building block of all the models is a positive random time 𝜏𝑥 , defined in a filtered probability

space (Ω,𝒢 , F, P), which represents the (random) remaining lifetime of an individual aged 𝑥. This

random time is often thought to be the first passage time an increasing (absolutely) continuous

stochastic process Γ𝑥 (F-adapted) to a random barrier Θ𝑥
(usually supposed to be an exponential

with parameter 1 and independent to F), i.e.,

𝜏𝑥 := inf{𝑡 ≥ 0 : Γ𝑥𝑡 > Θ𝑥}. (1.1)

Note that this random time 𝜏𝑥 , known as standard Cox one (see [15]), avoids all F-stopping times

(i.e., P(𝜏𝑥 = 𝜈) = 0 a.s., for all F-stopping time 𝜈).

As mentioned in Protter et al [26], difficulties arise when one deals with two or more random

lifetimes (e.g, here with two random lifetimes 𝜏𝑥 and 𝜏𝑦) with dependency induced by an external

shock event. Hence, they add some modifications along the lines of an extension of the Marshall

and Olkin [22] approach.

Their model appeals to the theory of progressive enlargement of filtration although the authors

did not insist on this framework. It consists in considering three F-conditional independent Cox

random times 𝜇1
, 𝜇2

and 𝜇3
and enlarge F with them to obtain a filtration G. Then define the

random lifetimes 𝜏𝑥 and 𝜏𝑦 as :

𝜏𝑥 := 𝜇1 ∧ 𝜇3

and 𝜏𝑦 := 𝜇2 ∧ 𝜇3.

Since the time 𝜇3
of the external shock event is totally inaccessible and avoids all the F-stopping,

both the random times 𝜏𝑥 and 𝜏𝑦 are also totally inaccessible and avoid all F-stopping times. In

addition, this model fails to take proper care over the non-fatal shocks which may also contribute

to the death of both spouses. By means it should be interesting to take into account some external

arrival shocks that may not be so fatal but increase the exposure of death of the spouse.

These last observations shape our thinking to build a model with several external shock events

with times of occurrence being F-stopping times. Hence, we construct some dependence ran-

dom times that do not avoid F-stopping times and which can be accessible. Our construction is a

combination of the so-called generalized Cox model (see [11]) and the Marshall and Olkin approach.

The main difference with Protter et al [26] approach is the way to construct the random fatal

shock time which leads to some different results. Moreover, the novelty of our construction lies in

the fact that it allows obtaining random lifetimes which can be accessible.
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2 Construction framework

In what follows, we omit the dependence on ages (𝑥 and 𝑦) to keep notation as simple as possible.

We consider the filtered probability space (Ω,𝒢 , F, P) where F = (ℱ𝑡)𝑡≥0 is a complete and con-

tinuous on right filtration, and 𝒢 a 𝜎-algebra satisfying ℱ∞ ⊂ 𝒢.

Let the following random times 𝜏 𝑓 := 𝜃 ∧ 𝜉 𝑓 and 𝜏𝑚 := 𝜃 ∧ 𝜉𝑚 where 𝜃 is the fatal shock time

constructed as either in Generalized Cox or Generalized Jiao and Li framework and the ran-

dom times 𝜉 𝑓 and 𝜉𝑚 are two standard Cox random times, i.e., 𝜉 𝑓 := inf{𝑡 ≥ 0 : 𝐹𝑡 > Θ 𝑓 } and

𝜉𝑚 := inf{𝑡 ≥ 0 : 𝑀𝑡 > Θ𝑚} where 𝐹 and 𝑀 are two increasing F-adapted continuous processes

with 𝐹0 = 𝑀0 = 0, 𝐹𝑡 < ∞, 𝑀𝑡 < ∞ for all 𝑡, and 𝐹∞ = ∞, 𝑀∞ = ∞ and the independent random

variables Θ 𝑓
and Θ𝑚

are unit exponential random ones which are independent of F.

We introduce the two right-continuous increasing processes 𝐴
𝑓

𝑡 = 11{𝜏 𝑓 ≤𝑡} and 𝐴𝑚𝑡 = 11{𝜏𝑚≤𝑡} as-

sociated respectively with 𝜏 𝑓 and 𝜏𝑚 and we denote by A 𝑓 = (𝒜 𝑓

𝑡 )𝑡≥0 and A𝑚 = (𝒜𝑚
𝑡 )𝑡≥0 the

(completed and right-continuous) filtrations generated by these processes. We denote by G the

global information so that G = A 𝑓 ∨A𝑚 ∨ F.

2.1 The generalized Cox model framework

Here, we recall the construction of the generalized Cox model as it is done in [11] which constitutes

a way to construct our fatal shock time.

Let some arrival external shock events with times of occurrence (𝜏𝑖)𝑖 being a strictly increasing

sequence of F-stopping times and corresponding to the jump times of an increasing càdlàg F-

adapted process 𝐾 such that 𝐾0 = 0, 𝐾𝑡 < ∞, for all 𝑡 ≥ 0 and 𝐾∞ = ∞. We define the fatal

shock time 𝜃 as the first time that the process 𝐾 hits a level which is a positive random variable Θ

independent of the filtration F, i.e.,

𝜃 := inf{𝑡 ≥ 0 : 𝐾𝑡 > Θ}. (2.1)

It is shown in [11] that {𝜃 = 𝜏𝑖} = {𝐾𝜏𝑖− < Θ ≤ 𝜏𝑖} and then

P(𝜏 = 𝜏𝑖 |ℱ𝑡) = E
[
𝑒−𝐾𝜏𝑖−(1 − 𝑒−Δ𝐾𝜏𝑖 )|ℱ𝑡

]
,∀𝑡 ≥ 0 .

Hence, the random time 𝜃 does not avoid all F-stopping.

Note that several examples of 𝐾 have been studied in [11] and one can use some of them in our

model.

2.1.1 The F-conditional survival law and the joint probability of 𝜏 𝑓 and 𝜏𝑚

Lemma 2.1 For all 𝑡 ≥ 0, one has

P({𝜏 𝑓 = 𝜏𝑚 = 𝜏𝑖}|ℱ𝑡) = E
[
𝑒−𝐹𝜏𝑖 𝑒−𝑀𝜏𝑖 [𝑒−𝐾𝜏𝑖−(1 − 𝑒−Δ𝐾𝜏𝑖 )]|ℱ𝑡

]
, ∀𝑖 ≥ 1. (2.2)
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Proof: From the definition of 𝜏 𝑓 and 𝜏𝑚 , one has the following equality

{𝜏 𝑓 = 𝜏𝑚 = 𝜏𝑖} = {𝜉 𝑓 > 𝜃, 𝜉𝑚 > 𝜃, 𝜃 = 𝜏𝑖}.

Hence, by using the definition of 𝜉 𝑓 and 𝜉𝑚 then

P(𝜉 𝑓 > 𝜃, 𝜉𝑚 > 𝜃, 𝜃 = 𝜏𝑖 |ℱ∞) =P(𝐹𝜏𝑖 < Θ 𝑓 , 𝑀𝜏𝑖 < Θ𝑚 , 𝐾𝜏𝑖− < Θ ≤ 𝜏𝑖 |ℱ∞).

Since Θ 𝑓
, Θ𝑚

and Θ are mutually independent and are independent of ℱ∞, one obtains

P(𝜏 𝑓 = 𝜏𝑚 = 𝜏𝑖 |ℱ∞) = 𝑒−𝐹𝜏𝑖 𝑒−𝑀𝜏𝑖 [𝑒−𝐾𝜏𝑖−(1 − 𝑒−Δ𝐾𝜏𝑖 )].

□

Lemma 2.2 For any 𝑡1 , 𝑡2 , 𝑡 ∈ R+, one has

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) = E

[
exp

(
−𝐹𝑡1 −𝑀𝑡2 − 𝐾max(𝑡1 ,𝑡2)

) ��ℱ𝑡 ] . (2.3)

In particular, if max(𝑡1 , 𝑡2) ≤ 𝑡, one obtains

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) = exp

(
−𝐹𝑡1 −𝑀𝑡2 − 𝐾max(𝑡1 ,𝑡2)

)
. (2.4)

Proof: For all 𝑡1 , 𝑡2 , 𝑡 ∈ R+,

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ∞) =P(𝜉 𝑓 > 𝑡1 , 𝜉

𝑓 > 𝑡2 , 𝜃 > max(𝑡1 , 𝑡2)|ℱ∞)
=P(𝐹𝑡1 < Θ 𝑓 , 𝑀𝑡2 < Θ𝑚 , 𝐾

max(𝑡1 ,𝑡2 < Θ |ℱ∞)
= exp

(
−𝐹𝑡1 −𝑀𝑡2 − 𝐾max(𝑡1 ,𝑡2)

)
.

□

2.1.2 Some closed forms

We consider the case where the filtration is generated by 𝐾 and two independent Brownian motions

𝑊1
and 𝑊2

which are independent of 𝐾 with 𝐹𝑡 =
∫ 𝑡

0

𝛾
𝑓
𝑠 𝑑𝑠 and 𝑀𝑡 =

∫ 𝑡

0

𝛾𝑚𝑠 𝑑𝑠 where 𝛾 𝑓 is a non-

negative F𝑊
1

-adapted process and 𝛾𝑚 is non-negative F𝑊
2

-adapted.

We have for any 𝑡 ≤ min(𝑡1 , 𝑡2)

E
[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2 𝑒−𝐾max(𝑡
1
,𝑡

2
)
��ℱ𝑡 ] =E [

E
[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2 𝑒−𝐾max(𝑡
1
,𝑡

2
)
��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡 ∨ ℱ 𝐾
𝑇

] ��ℱ𝑡 ] , for max(𝑡1 , 𝑡2) ≤ 𝑇.
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Hence, since 𝐾
max(𝑡1 ,𝑡2) ∈ ℱ 𝐾

𝑇
⊂ ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡 ∨ ℱ 𝐾
𝑇

then,

E
[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2 𝑒−𝐾max(𝑡
1
,𝑡

2
)
��ℱ𝑡 ] =E [

𝑒−𝐾max(𝑡
1
,𝑡

2
)E

[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2

��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡 ∨ ℱ 𝐾
𝑇

] ��ℱ𝑡 ] .
Due to the fact that ℱ𝑊1

𝑡 ∨ℱ𝑊2

𝑡 is independent of ℱ 𝐾
𝑇

, then 𝐹𝑡1 ∈ ℱ𝑊1

𝑡 ∨ℱ𝑊2

𝑡 and 𝑀𝑡2 ∈ ℱ𝑊1

𝑡 ∨ℱ𝑊2

𝑡

are independent of ℱ 𝐾
𝑇

and then

E
[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2 𝑒−𝐾max(𝑡
1
,𝑡

2
)
��ℱ𝑡 ] =E [

𝑒−𝐾max(𝑡
1
,𝑡

2
)E

[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2

��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡

] ��ℱ𝑡 ]
=E

[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2

��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡

]
E

[
𝑒−𝐾max(𝑡

1
,𝑡

2
)
��ℱ𝑡 ]

where we have used the fact that E
[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2

��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡

]
is ℱ𝑡-measurable in the last equality.

Using the same reasoning, we obtain

E
[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2 𝑒−𝐾max(𝑡
1
,𝑡

2
)
��ℱ𝑡 ] =E [

E
[
𝑒−𝐹𝑡1 𝑒−𝑀𝑡

2

��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡 ∨ ℱ𝑊2

𝑇

] ��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡

]
E

[
𝑒−𝐾max(𝑡

1
,𝑡

2
)
��ℱ 𝐾
𝑡

]
=E

[
𝑒−𝑀𝑡

2E
[
𝑒−𝐹𝑡1

��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡 ∨ ℱ𝑊2

𝑇

] ��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡

]
E

[
𝑒−𝐾max(𝑡

1
,𝑡

2
)
��ℱ 𝐾
𝑡

]
=E

[
𝑒−𝑀𝑡

2E
[
𝑒−𝐹𝑡1

��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡

] ��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡

]
E

[
𝑒−𝐾max(𝑡

1
,𝑡

2
)
��ℱ 𝐾
𝑡

]
=E

[
𝑒−𝑀𝑡

2E
[
𝑒−𝐹𝑡1

��ℱ𝑊1

𝑡

] ��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡

]
E

[
𝑒−𝐾max(𝑡

1
,𝑡

2
)
��ℱ 𝐾
𝑡

]
=E

[
𝑒−𝐹𝑡1

��ℱ𝑊1

𝑡

]
E

[
𝑒−𝑀𝑡

2

��ℱ𝑊1

𝑡 ∨ ℱ𝑊2

𝑡

]
E

[
𝑒−𝐾max(𝑡

1
,𝑡

2
)
��ℱ 𝐾
𝑡

]
=E

[
𝑒−𝐹𝑡1

��ℱ𝑊1

𝑡

]
E

[
𝑒−𝑀𝑡

2

��ℱ𝑊2

𝑡

]
E

[
𝑒−𝐾max(𝑡

1
,𝑡

2
)
��ℱ 𝐾
𝑡

]
.

Note that some closed forms can be obtained for the first two quantities in the last equal-

ity when one deals with 𝐹 and 𝑀 related to some specific processes such as affine or polyno-

mial processes. Hence, we only consider these notations, for now, ℎ1

𝑡 (0, 𝑡1) := E
[
𝑒−𝐹𝑡1

��ℱ𝑊1

𝑡

]
and

ℎ2

𝑡 (0, 𝑡2) := E
[
𝑒−𝑀𝑡

2

��ℱ𝑊2

𝑡

]
. Hence, the F-conditional survival joint probability is given by

P({𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2}|ℱ𝑡) = ℎ1

𝑡 (0, 𝑡1)ℎ2

𝑡 (0, 𝑡2)E
[
𝑒−𝐾max(𝑡

1
,𝑡

2
)
��ℱ 𝐾
𝑡

]
. (2.5)

For example, if 𝛾 𝑓 and 𝛾𝑚 are affine processes, then one has for min(𝑡1 , 𝑡2) ≥ 𝑡

ℎ1

𝑡 (0, 𝑡1) =𝑒
−

∫ 𝑡

0

𝛾
𝑓
𝑠 𝑑𝑠 𝑒𝐴

1

𝑡 (𝑡1)−𝐵1

𝑡 (𝑡2)𝛾
𝑓

𝑡 ,

and

ℎ2

𝑡 (0, 𝑡2) =𝑒
−

∫ 𝑡

0

𝛾𝑚𝑠 𝑑𝑠 𝑒𝐴
2

𝑡 (𝑡1)−𝐵2

𝑡 (𝑡2)𝛾𝑚𝑡 ,

where for 𝑗 ∈ {1, 2}, 𝐴 𝑗
and 𝐵 𝑗 are differentiable functions with 𝐴

𝑗

𝑡 𝑗
(𝑡 𝑗) = 0 and 𝐵

𝑗

𝑡 𝑗
(𝑡 𝑗) = 0 and verify

generalized Riccati ODEs (see [7]).

Comment 2.3 Some closed forms can be obtaining when playing with the type of the process 𝐾.
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For instance one can choose 𝐾 to be a subordinator, a marked point process, a shot noise...

When the process 𝐾 is a subordinator: we consider now the process 𝐾 to be a null drift

Lévy subordinator with Lévy’s measure 𝜈. Hence, 𝜂𝑢 := 𝑒−𝐾𝑢 𝑒𝜙(1)𝑢 , ∀𝑢 ≥ 0 (where we 𝜙(1) :=∫
R+

(1 − 𝑒−𝑥) 𝜈(𝑑𝑥)) is an F𝐾-martingale. Therefore E[𝑒−𝐾𝑢ℱ 𝐾
𝑡 ] = 𝜂𝑡 𝑒−𝜙(1)𝑢 , for all 𝑢 ≥ 𝑡 and by

consequence, for all 𝑡1 , 𝑡2 ∈ R+ such that min(𝑡1 , 𝑡2) ≥ 𝑡 ≥ 0, one has

E[𝑒−𝐾max(𝑡
1
,𝑡

2
)
��ℱ 𝐾
𝑡 ] = 𝜂𝑡 𝑒

−𝜙(1)max(𝑡1 ,𝑡2).

Therefore, for min(𝑡1 , 𝑡2) ≥ 𝑡, the joint conditional survival probability of 𝜏 𝑓 and 𝜏𝑚 has the following

form:

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) = ℎ1

𝑡 (0, 𝑡1)ℎ2

𝑡 (0, 𝑡2)𝜂𝑡 𝑒−𝜙(1)max(𝑡1 ,𝑡2). (2.6)

2.2 The Generalized Jiao and Li framework

The so-called generalized Jiao and Li model (see [11]) is an extension of the model in [13] developed

in the sovereign risk modelling to capture the impacts of some possible arrival shock events on the

prices of the defaultable claims which may induce some jumps in these prices. In the generalized

Jiao and Li model, the fatal shock time can be constructed as follows.

We consider the (supposed) increasing càdlàg process𝑋 such that𝑋0 = 0,𝑋∞ = ∞, independent

ofF and an increasing sequence ofF-adapted stopping times (𝜏𝑖)𝑖≥1. One denotes byΨ the increasing

deterministic function with Ψ(0) = 0 and Ψ(∞) = ∞ such that P(𝑋𝑢 ≤ 1) = 𝑒−Ψ(𝑢)
. One denotes by

F𝑋 the natural filtration of 𝑋. We are given the following form of the fatal shock time 𝜃

𝜃 = 𝜏𝑖 on {𝑋𝜏𝑖−1
≤ 1 < 𝑋𝜏𝑖 }, for 𝑖 ≥ 1 (2.7)

and

𝜉 := inf{𝑡 ≥ 0 : Γ𝑡 > Θ} (2.8)

where Γ is an increasing F-adapted continuous process with Γ0 = 0, Γ𝑡 < ∞ for all 𝑡, and Γ∞ = ∞
and Θ a random variable, independent of F and F𝑋 , with a unit exponential law.

2.2.1 The F-conditional survival law and the joint probability of 𝜏 𝑓 and 𝜏𝑚

The following trivial equality could frequently be used in this work

∑
𝑖≥1

11{𝜏𝑖>𝑡≥𝜏𝑖−1}𝑒
−𝑈(𝜏𝑖−1) = exp

(
−

∑
𝑖≥1

11{𝜏𝑖>𝑡≥𝜏𝑖−1}𝑈(𝜏𝑖−1)
)
, (2.9)

for any function𝑈 : R+ → R.
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Lemma 2.4 For all 𝑡 ≥ 0, one has

P(𝜏 𝑓 = 𝜏𝑚 = 𝜏𝑖 |ℱ𝑡) = E[𝑒−(𝐹𝜏𝑖+𝑀𝜏𝑖 )
{
𝑒−Ψ(𝜏𝑖−1) − 𝑒−Ψ(𝜏𝑖 )

}
|ℱ𝑡], ∀𝑖 ≥ 1. (2.10)

Proof: From the definition of 𝜏 𝑓 and 𝜏𝑚 , one has the following equality

{𝜏 𝑓 = 𝜏𝑚 = 𝜏𝑖} = {𝜉 𝑓 > 𝜏𝑖 , 𝜉
𝑚 > 𝜏𝑖 , 𝑋𝜏𝑖−1

≤ 1 < 𝑋𝜏𝑖 }.

Hence, by using the definition of 𝜉 𝑓 and 𝜉𝑚 as well as the fact that (𝜏𝑖)𝑖 are F-stopping times,

hence are ℱ∞-measurable random variables and that the random variable 𝑋𝜏𝑖 is, for any 𝑖, ℱ∞ ∨ℱ 𝑋
∞

measurable, one obtains

P(𝜉 𝑓 > 𝜏𝑖 , 𝜉
𝑚 > 𝜏𝑖 , 𝑋𝜏𝑖−1

≤ 1 < 𝑋𝜏𝑖 |ℱ∞) =E
[
P(𝜉 𝑓 > 𝜏𝑖 |ℱ∞ ∨ ℱ 𝑋

∞ )P(𝜉𝑚 > 𝜏𝑖 |ℱ∞ ∨ ℱ 𝑋
∞ )11{𝑋𝜏𝑖−1

≤1<𝑋𝜏𝑖 } |ℱ∞
]

=E
[
P(𝐹𝜏𝑖 < Θ 𝑓 |ℱ∞ ∨ ℱ 𝑋

∞ )P(𝑀𝜏𝑖 < Θ𝑚 |ℱ∞ ∨ ℱ 𝑋
∞ )11{𝑋𝜏𝑖−1

≤1<𝑋𝜏𝑖 } |ℱ∞
]

where the first equality requires the tower property and the independence of 𝜉 𝑓 and 𝜉𝑚 .

Since Θ 𝑓
, Θ𝑚

and 𝑋 are mutually independent and are independent of ℱ∞, then using the fact that

𝐹𝜏𝑖 ∈ ℱ∞ and 𝑀𝜏𝑖 ∈ ℱ∞ leads to

P(𝐹𝜏𝑖 < Θ 𝑓 |ℱ∞ ∨ ℱ 𝑋
∞ ) = P(𝐹𝜏𝑖 < Θ |ℱ∞) = 𝑒−𝐹𝜏𝑖 (2.11)

and

P(𝑀𝜏𝑖 < Θ𝑚 |ℱ∞ ∨ ℱ 𝑋
∞ ) = P(𝑀𝜏𝑖 < Θ |ℱ∞) = 𝑒−𝑀𝜏𝑖 . (2.12)

Therefore, it follows

P(𝜉 𝑓 > 𝜏𝑖 , 𝜉
𝑚 > 𝜏𝑖 , 𝑋𝜏𝑖−1

≤ 1 < 𝑋𝜏𝑖 |ℱ∞) =𝑒−𝐹𝜏𝑖 𝑒−𝑀𝜏𝑖 P(𝑋𝜏𝑖−1
≤ 1 < 𝑋𝜏𝑖 |ℱ∞)

=𝑒−𝐹𝜏𝑖 𝑒−𝑀𝜏𝑖 {P(𝑋𝜏𝑖−1
≤ 1|ℱ∞) − P(𝑋𝜏𝑖 ≤ 1|ℱ∞)}

=𝑒−𝐹𝜏𝑖 𝑒−𝑀𝜏𝑖

{
𝑒−Ψ(𝜏𝑖−1) − 𝑒−Ψ(𝜏𝑖 )

}
. (2.13)

The last equality is due to the fact that the random variables 𝜏𝑖 are ℱ∞-measurable and the process

𝑋 is independent of ℱ∞.

Therefore

P(𝜏 𝑓 = 𝜏𝑚 = 𝜏𝑖 |ℱ𝑡) = E[𝑒−(𝐹𝜏𝑖+𝑀𝜏𝑖 )
{
𝑒−Ψ(𝜏𝑖−1) − 𝑒−Ψ(𝜏𝑖 )

}
|ℱ𝑡] .

□

Lemma 2.5 For any 𝑡1 , 𝑡2 , 𝑡 ∈ R+, one has

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) = E

[
exp

(
−

∞∑
𝑖=1

11{𝜏𝑖≤max(𝑡1 ,𝑡2)}[Ψ(𝜏𝑖) −Ψ(𝜏𝑖−1)] − (𝐹𝑡1 +𝑀𝑡2)
)
|ℱ𝑡

]
. (2.14)
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In particular, if max(𝑡1 , 𝑡2) ≤ 𝑡, one obtains

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) = exp

(
−

∞∑
𝑖=1

11{𝜏𝑖≤max(𝑡1 ,𝑡2)}[Ψ(𝜏𝑖) −Ψ(𝜏𝑖−1)] − (𝐹𝑡1 +𝑀𝑡2)
)
. (2.15)

Proof: For all 𝑡1 , 𝑡2 , 𝑡 ∈ R+,

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) =

∞∑
𝑖=1

P(𝜃 > 𝑡1 , 𝜉
𝑓 > 𝑡1 , 𝜃 > 𝑡2 , 𝜉

𝑓 > 𝑡2 , 𝜃 = 𝜏𝑖 |ℱ𝑡)

=

∞∑
𝑖=1

P(𝜏𝑖 > 𝑡1 , 𝜏𝑖 > 𝑡2 , 𝜉
𝑓 > 𝑡1 , 𝜉

𝑚 > 𝑡2 , 𝑋𝜏𝑖−1
≤ 1 < 𝑋𝜏𝑖 |ℱ𝑡).

By using the fact that 𝜏0 = 0 (which implies that the set {𝜏0 > 𝑢} is empty), one has

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) =

∞∑
𝑖=1

P(𝜏𝑖 > max(𝑡1 , 𝑡2) ≥ 𝜏𝑖−1 , 𝜉
𝑓 > 𝑡1 , 𝜉

𝑚 > 𝑡2 , 𝑋𝜏𝑖−1
≤ 1|ℱ𝑡)

=

∞∑
𝑖=1

E[11{𝜏𝑖>max(𝑡1 ,𝑡2)≥𝜏𝑖−1}P(𝜉 𝑓 > 𝑡1 |ℱ∞ ∨ ℱ 𝑋
∞ )P(𝜉𝑚 > 𝑡2 |ℱ∞ ∨ ℱ 𝑋

∞ )11{𝑋𝜏𝑖−1
≤1} |ℱ𝑡]

=

∞∑
𝑖=1

E[11{𝜏𝑖>max(𝑡1 ,𝑡2)≥𝜏𝑖−1}𝑒
−𝐹𝑡

1 𝑒−𝑀𝑡
2 11{𝑋𝜏𝑖−1

≤1} |ℱ𝑡],

where we have used, in the last equality, the fact that Θ 𝑓
independent of Θ𝑚

and together indepen-

dent of F ∨ F𝑋 . This implies

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) =

∞∑
𝑖=1

E[11{𝜏𝑖>max(𝑡1 ,𝑡2)≥𝜏𝑖−1}𝑒
−𝐹𝑡

1 𝑒−𝑀𝑡
2P(𝑋𝜏𝑖−1

≤ 1|ℱ∞)|ℱ𝑡]

=E

[ ∞∑
𝑖=1

11{𝜏𝑖>max(𝑡1 ,𝑡2)≥𝜏𝑖−1}𝑒
−(𝐹𝑡

1
+𝑀𝑡

2
)𝑒−Ψ(𝜏𝑖−1) |ℱ𝑡

]
=E

[
exp

(
−

∞∑
𝑖=1

11{𝜏𝑖>max(𝑡1 ,𝑡2)≥𝜏𝑖−1}Ψ(𝜏𝑖−1)
)
𝑒−(𝐹𝑡1+𝑀𝑡

1
) |ℱ𝑡

]
=E

[
exp

(
−

∞∑
𝑖=0

11{𝜏𝑖≤max(𝑡1 ,𝑡2)}Ψ(𝜏𝑖) +
∞∑
𝑖=1

11{𝜏𝑖≤max(𝑡1 ,𝑡2)}Ψ(𝜏𝑖−1)
)
𝑒−(𝐹𝑡1+𝑀𝑡

2
) |ℱ𝑡

]
.

Since Ψ(𝜏0) = 0, one has

∞∑
𝑖=0

11{𝜏𝑖≤max(𝑡1 ,𝑡2)}Ψ(𝜏𝑖) =
∞∑
𝑖=1

11{𝜏𝑖≤max(𝑡1 ,𝑡2)}Ψ(𝜏𝑖).
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Hence, it follows

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) =E

[
exp

(
−

∞∑
𝑖=1

11{𝜏𝑖≤max(𝑡1 ,𝑡2)}[Ψ(𝜏𝑖) −Ψ(𝜏𝑖−1)] − (𝐹𝑡1 +𝑀𝑡2)
)
|ℱ𝑡

]
.

□

2.2.2 Some specific cases

The case where 𝐹 and 𝑀 are deterministic We Assume that 𝐹𝑡 = 𝐹(𝑡) :=
∫ 𝑡

0

𝛾 𝑓 (𝑠)𝑑𝑠 and

𝑀𝑡 = 𝑀(𝑡) :=
∫ 𝑡

0

𝛾𝑚(𝑠)𝑑𝑠 with 𝐹(∞) = ∞, 𝑀(∞) = ∞, and where 𝐹 and 𝑀 are deterministic positive

functions. We assume to know, for any 𝑖, the F-compensator of 𝜏𝑖 , i.e., the F-predictable increasing

process 𝐽 𝑖 , with 𝐽 𝑖
0
= 0, such that

(11{𝜏𝑖≤𝑡} − 𝐽 𝑖𝑡∧𝜏𝑖 , 𝑡 ≥ 0)

is an F-martingale.

Lemma 2.6 For any 𝑡1 , 𝑡2 , 𝑡 ∈ R+, the joint survival probability of 𝜏 𝑓 and 𝜏𝑚 is given by

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2) = exp (−[𝐹(𝑡1) +𝑀(𝑡2)])

(
1 − E

[ ∞∑
𝑖=0

∫
max(𝑡1 ,𝑡2)

0

11{𝑠<𝜏𝑖 }
(
𝑒−Ψ(𝜏𝑖 ) − 𝑒−Ψ(𝑠)

)
𝑑𝐽 𝑖+1

𝑠

])
.

Proof: The proof is based in [11], we describe the different steps.

In this case, the joint survival probability is given by

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2) = exp (−[𝐹(𝑡1) +𝑀(𝑡2)])E

[
exp

(
−

∞∑
𝑖=1

11{𝜏𝑖≤max(𝑡1 ,𝑡2)}[Ψ(𝜏𝑖) −Ψ(𝜏𝑖−1)]
)]
.

Take 𝑢 := 𝑚𝑎𝑥(𝑡1 , 𝑡2), then the process

𝑄𝑢 := exp

(
−

∞∑
𝑖=1

11{𝜏𝑖≤𝑢}[Ψ(𝜏𝑖) −Ψ(𝜏𝑖−1)]
)

(2.16)

is decreasing, hence is a supermartingale. Using (2.9), we get

𝑄𝑢 =

∞∑
𝑖=0

11{𝜏𝑖≤𝑢<𝜏𝑖+1}𝑒
−Ψ(𝜏𝑖 ) =

∞∑
𝑖=0

(
11{𝜏𝑖≤𝑢}𝑒

−Ψ(𝜏𝑖 ) − 11{𝜏𝑖+1≤𝑢}𝑒
−Ψ(𝜏𝑖 )

)
=

∞∑
𝑖=0

(
𝑄1,𝑖
𝑢 −𝑄2,𝑖

𝑢

)
where the processes𝑄1,𝑖

and𝑄2,𝑖
are the ones defined𝑄1,𝑖

𝑢 := 11{𝜏𝑖≤𝑢}𝑒
−Ψ(𝜏𝑖 )

and𝑄2,𝑖
𝑢 := 11{𝜏𝑖+1≤𝑢}𝑒

−Ψ(𝜏𝑖 )
.

Therefore, 𝑄 admits the decomposition 𝑄 = 𝑚𝑄 − 𝜁, where 𝑚𝑄
is a martingale and 𝜁 is the pre-
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dictable process given as

𝜁𝑢 =

∞∑
𝑖=0

(∫ 𝑢

0

11{𝜏𝑖<𝑠}𝑒
−Ψ(𝜏𝑖 )𝑑𝐽 𝑖+1

𝑠 −
∫ 𝑢

0

𝑒−Ψ(𝑠)𝑑𝐽 𝑖𝑠

)
.

Since 𝑀 𝑖+1 = 𝐴𝑖+1 − 𝐽 𝑖+1
is a martingale with 𝑀 𝑖+1

0
= 0 and 𝐴𝑖+1

𝜏𝑖 = 0, we obtain

E[𝐽 𝑖+1

𝜏𝑖 ] = E[𝐴𝑖+1

𝜏𝑖 −𝑀 𝑖+1

𝜏𝑖 ] = −E[𝑀 𝑖+1

𝜏𝑖 ] = 0

which implies that 𝐽 𝑖+1

𝜏𝑖 = 0 and then due to the increasing property of 𝐽 𝑖+1
, 𝐽 𝑖+1

𝑡 = 0 on {𝑡 ≤ 𝜏𝑖}.
This shows that the support of 𝐽 𝑖+1

is [𝜏𝑖 , 𝜏𝑖+1].
Hence, it follows that

∫ 𝑢

0

11{𝜏𝑖<𝑠}𝑒
−Ψ(𝜏𝑖 )𝑑𝐽 𝑖+1

𝑠 =
∫ 𝑢

0

𝑒−Ψ(𝜏𝑖 )𝑑𝐽 𝑖+1

𝑠 , and then

𝜁𝑢 =

∞∑
𝑖=0

∫ 𝑢

0

𝑒−Ψ(𝜏𝑖 )𝑑𝐽 𝑖+1

𝑠 −
∞∑
𝑖=1

∫ 𝑢

0

𝑒−Ψ(𝑠)𝑑𝐽 𝑖𝑠 =
∞∑
𝑖=0

∫ 𝑢

0

(
𝑒−Ψ(𝜏𝑖 ) − 𝑒−Ψ(𝑠)

)
𝑑𝐽 𝑖+1

𝑠

where we have used the fact that 𝐽0 = 0.

Due to the form of the support of 𝐽 𝑖+1
, we have 𝜁𝑢 =

∑∞
𝑖=0

∫ 𝑢

0

11{𝑠<𝜏𝑖 }
(
𝑒−Ψ(𝜏𝑖 ) − 𝑒−Ψ(𝑠)

)
𝑑𝐽 𝑖+1

𝑠 , hence,

since 𝑒−Ψ(𝜏𝑖 ) − 𝑒−Ψ(𝑠) ≥ 0 for 𝑠 > 𝜏𝑖 , the process 𝜁 is increasing.

By consequence E[𝑄𝑢] = 1 − 𝐸[𝜁𝑢], ∀𝑢 ∈ R+.

□

Comment 2.7 If the two types of construction both lead to dependence between the times of death,

a difficulty concerns the choice of the best model. Indeed, it would depend on the quantities in

which one is interested. For example, in the context of factor analysis of life insurance product

prices, the Cox model would be better given its simplicity with closed formulas, especially in the

context where the process 𝐾 is a subordinator However, this framework does not explain well the

impact of price shocks through price jumps. This last specificity could be obtained when 𝐾 is a

shot-noise even if the calculations would not be easy. In any case, the generalized model of Jiao and

Li is a bit complicated to implement in this context because it is not easy to obtain closed forms.

Moreover, it is much more interpretable in the case where the shocks do not necessarily lead to the

simultaneous death of the members of the couple. A future study will focus on the latter.

3 Pricing of some life insurance contract under the Generalized
Cox framework

Let 𝜏(1) be the moment of the first death of the couple, i.e, 𝜏(1) := min(𝜏 𝑓 , 𝜏𝑚). Setting 𝑍(𝑡1 , 𝑡2; 𝑡) :=

P(𝜏 𝑓 > 𝑡1 , 𝜏𝑚 > 𝑡2 |ℱ𝑡), for any 𝑡1 , 𝑡2 , 𝑡 ∈ R+ one has 𝑍(1)(𝑡; 𝑡) := P(𝜏(1) > 𝑡 |ℱ𝑡) = 𝑍(𝑡 , 𝑡; 𝑡), for any

𝑡 ∈ R+ which is a supermartingale.

For simplicity, we suppose that the probability P is the pricing measure and the interest rate is zero.

Definition 3.1 A first-to-die life contract is a policy which promises a payment of an amount 𝑅 (that we
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suppose to be F-predictable) at the first time of death of the spouse 𝜏(1) before a fixed time 𝑇. Hence, the value
at time 0 ≤ 𝑡 ≤ 𝑇 of the death benefit is given by

𝐹𝑡(𝑇) := E[𝑅𝜏(1)11𝑡<𝜏(1)≤𝑇 |𝒢𝑡] = 11{𝜏(1)>𝑡}
1

𝑍(1)(𝑡; 𝑡)
E

[∫ 𝑇

𝑡

𝑅𝑢𝑑𝐴
𝑝,𝜏1

𝑢 |ℱ𝑡
]

(3.1)

where 𝐴𝑝,𝜏1 is the predictable part of the Doob-Meyer decomposition of 𝑍(1).

The equality (3.1) is analogous to the valuation of the recovery part in a single credit default contract

(see, e.g., [3, Lemma 7.4.1.2]; [2, proposition 8.2.1] for more details).

In the case where 𝐹𝑡 = 𝐹(𝑡) and 𝑀𝑡 = 𝑀(𝑡) and 𝐾 is a Lévy subordinator as given in subsection

2.1.2, one has from (2.6) that for any 𝑡 ∈ R+,

𝑍(1)(𝑡; 𝑡) = 𝑒−𝐹(𝑡)𝑒−𝑀(𝑡)𝜂𝑡 𝑒
−𝜙(1)𝑡 . (3.2)

Hence, by using the same computations as in [11], the F-predictable part of the Doob-Meyer

decomposition of 𝑍(1) is given by

𝑑𝐴
𝑝,𝜏1

𝑡 =

(
𝛾 𝑓 (𝑡) + 𝛾𝑚(𝑡) + 𝜙(1)

)
𝑍(1)(𝑡; 𝑡)𝑑𝑡, for any 𝑡 ∈ R+.

It follows from this that the value at time 0 ≤ 𝑡 ≤ 𝑇 of the death benefit is given by 𝐹𝑡(𝑇) =

11{𝜏(1)>𝑡}𝐹𝑡(𝑇), where ( we call 𝐹 the pre-death price)

𝐹𝑡(𝑇) :=
1

𝑍(1)(𝑡; 𝑡)

∫ 𝑇

𝑡

E
[
𝑅𝑢

(
𝛾 𝑓 (𝑢) + 𝛾𝑚(𝑢) + 𝜙(1)

)
𝑍(1)(𝑢; 𝑢)|ℱ𝑡

]
𝑑𝑢. (3.3)

By setting 𝑅 = 1, one has

𝐹𝑡(𝑇) = 11{𝜏(1)>𝑡}
1

𝑍(1)(𝑡; 𝑡)
(
𝛾 𝑓 (𝑢) + 𝛾𝑚(𝑢) + 𝜙(1)

) ∫ 𝑇

𝑡

E
[
𝑍(1)(𝑢; 𝑢)|ℱ𝑡

]
𝑑𝑢.

By consequence, simple computations lead to the so-called best estimate value of the first-to-die

contract (see [14]) which is given by

𝐹0(𝑇) = 1 − exp

(
−𝐹(𝑇) −𝑀(𝑇) − 𝜙(1)𝑇

)
. (3.4)

It is not difficult to show that 𝐹 admits some jumps at the shock times (𝜏𝑖)𝑖 (hence at the fatal

shock time 𝜃) with non-negative jump sizes given by

Δ𝐹𝜏𝑖 (𝑇)11{𝜏𝑖≤𝑇} = 𝐹𝜏𝑖−(𝑇)(𝑒Δ𝐾𝜏𝑖 − 1)11{𝜏𝑖≤𝑇} . (3.5)

Definition 3.2 A continuous 𝑇-year joint life survival benefit is a contract which promises a payment of 𝐶
amount at 𝑇 (supposed to be bounded F-adapted) for the survival of both spouses after time 𝑇. Hence, its
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value at time 𝑡 is then given by

𝑆𝑡(𝑇) := E[𝐶𝑇11𝜏(1)>𝑇 |𝒢𝑡] = 11{𝜏(1)>𝑡}
1

𝑍(1)(𝑡; 𝑡)
E

[
𝐶𝑇𝑍(1)(𝑇;𝑇)|ℱ𝑡

]
(3.6)

Definition 3.3 Following [4], the value of annuity can be computed by adding life benefits. Hence, the net
single premium (we denote it 𝐴̄𝑇) for a 𝑇-year joint life annuity paying continuously an instantaneous benefit
rate 𝐶 (supposed to be ℱ𝑇-measurable) over the survival life time of both the spouses is given by

𝐴̄(𝑇) :=

∫ 𝑇

0

𝑆0(𝑢)𝑑𝑢 =

∫ 𝑇

0

E[𝐶𝑢𝑍(1)(𝑢; 𝑢)]𝑑𝑢. (3.7)

In the case where the two processes 𝑀 and 𝐹 are deterministic and 𝐶 = 1, that value is given by

𝐴̄(𝑇) =
∫ 𝑇

0

𝑒−𝐹(𝑢)𝑒−𝑀(𝑢)𝑒−𝜙(1)𝑢𝑑𝑢. (3.8)

By setting 𝜑(𝑢) = 𝐹(𝑢) +𝑀(𝑢) + 𝜙(1)𝑢, one has

𝐴̄(𝑇) = 1

𝜑′(0) −
𝑒−𝜑(𝑇)

𝜑′(𝑇) .

4 Numerical application

In this section, we present some examples to illustrate how the general model built in this paper

can be applied to a concrete case. We consider the generalized Cox framework in which uncertainty

in the two-dimensional intensity process (𝑀, 𝐹) comes from a two-dimensional Brownian motion

𝑊 = (𝑊𝑥 ,𝑊𝑦), and take ℱ = ℱ𝑊 ∨ ℱ 𝐾
, where ℱ𝑊

is the filtration generated by 𝑊 . Under our

framework, for 𝑡 < min(𝑡1 , 𝑡2) the joint survival function observed at time 𝑡 admits the following

separation:

𝑆𝑥,𝑦(𝑡1 , 𝑡2; 𝑡) := P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) = 𝑆̃𝑥,𝑦(𝑡1 , 𝑡2; 𝑡)E

[
𝑒−𝐾max(𝑡

1
,𝑡

2
) |ℱ 𝐾

𝑡

]
,

where 𝑆̃𝑥,𝑦(𝑡1 , 𝑡2; 𝑡) = E
[
𝑒−(𝑀𝑡

1
+𝐹𝑡

2
) |ℱ𝑊

𝑡

]
is the conditional joint survival function when no catas-

trophic events are considered. We will make use of Sibuya’s function as the measure of time-

dependent association of coupled lives. This function, which has been emphasized by [14], verifies

the following equality

P(𝜏 𝑓 > 𝑡1 , 𝜏
𝑚 > 𝑡2 |ℱ𝑡) = P(𝜏 𝑓 > 𝑡1 |ℱ𝑡)P(𝜏𝑚 > 𝑡2 |ℱ𝑡)𝜌(𝑡1 , 𝑡2; 𝑡),

13

Electronic copy available at: https://ssrn.com/abstract=4104327



and is not restricted in [−1, 1] but is only strictly positive. Thus, our theoretical Sibuya’s function

reads:1

𝜌(𝑡1 , 𝑡2; 𝑡) =
𝑆̃𝑥,𝑦(𝑡1 , 𝑡2; 𝑡)E

[
𝑒−𝐾max(𝑡

1
,𝑡

2
) |ℱ 𝐾

𝑡

]
E

[
𝑒−𝑀𝑡

1 |ℱ𝑊
𝑡

]
E

[
𝑒−𝐹𝑡2 |ℱ𝑊

𝑡

]
E

[
𝑒−(𝐾𝑡1+𝐾𝑡2) |ℱ 𝐾

𝑡

] . (4.1)

Moreover, under the further assumption of independence between 𝑊𝑥 and 𝑊𝑦 (and thus ℱ𝑊 =

ℱ𝑊𝑥 ∨ ℱ𝑊𝑦
with the filtrations ℱ𝑊𝑥

and ℱ𝑊𝑥
mutually independent) the Sibuya’s function does

not depend on the choice of the intensity process (𝐹, 𝑀), thus having

𝜌(𝑡1 , 𝑡2; 𝑡) = E
[
𝑒𝐾𝑡1+𝐾𝑡2−𝐾max(𝑡

1
,𝑡

2
) |ℱ 𝐾

𝑡

]
. (4.2)

4.1 Data and calibration procedure

We have at our disposition the well-known dataset first studied in [8].2 The dataset consists of 14,947

joint life contracts from a Canadian company, observed during the period that goes from December

29, 1988 to December 31, 1993. We restrict our attention to the same subset of contracts analyzed in

[19]. In particular we select those contracts whose males are born over the period January 1, 1907

- December 31, 1920 and females are born over the period January 1, 1910 - December 31, 1923.

Since we are referring to the generation of males and females with minimum entry age of 65 and

68, respectively, from now on we indicate with 𝑥 = 65 and 𝑦 = 68 those generations.

Due to the censored nature of the data at hand, the classical approach described in the standard

actuarial textbook to derive marginal and joint survival probabilities from mortality tables does not

apply here, thus forcing us to rely on non-parametric estimators borrowed from survival analysis.

In particular, we follow the recent literature ([19, 20, 29] and references therein) and use the Kaplan-

Meier non-parametric estimator to reconstruct the empirical marginal survival functions 𝑆
Emp
65

(𝑢),
𝑆

Emp
68

(𝑢), and its two-dimensional extension called Dabrowska’s ([6]) estimator for the reconstruction

of the joint empirical survival function 𝑆
Emp
65,68

(𝑠, 𝑢). During the last decade these estimators have

become quite standard in the literature of joint mortality modelling. For this reason, we omit their

constructions and refer to the relevant literature for more details. From the empirical (marginal and

joint) survival functions we then construct what we call the empirical Sibuya’s function, as

𝜌
Emp
65,68

(𝑠, 𝑢) =
𝑆

Emp
65,68

(𝑠, 𝑢)

𝑆
Emp
65

(𝑠)𝑆Emp
68

(𝑢)
,

that constitutes the starting point for the calibration procedure and is presented in Figure 1. From

that figure, we note the positive quadrant dependence structure implied by the dataset under

consideration.

To describe the calibration procedure used in this paper, we set 𝑡 = 0 and define the set of

parameters to be estimated as 𝜔 =
(
𝜔𝑊 , 𝜔𝐾

)
, where 𝜔𝑊 refers to the parameters of 𝑆̃(𝑡 , 𝑠; 0) and 𝜔𝐾

1In our setup, we have P
(
𝜏 𝑓 > 𝑠 |ℱ𝑡

)
= E

[
𝑒−𝐹𝑠 |ℱ𝑊

𝑡

]
E

[
𝑒−𝐾𝑠 |ℱ 𝐾

𝑡

]
. Analogous calculations can be done for

the marginal probability P (𝜏𝑚 > 𝑠 |ℱ𝑡 ).
2The authors wish to thank the Society of Actuaries, through the courtesy of Edward (Jed) Frees and

Emiliano A. Valdez, for making available to us the data in this paper.
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Figure 1: Heatmap of the empirical Sibuya’s function 𝜌
Emp
65,68

(𝑠, 𝑡) .

refers to the parameters of the catastrophic process 𝐾; As a matter of notation, we use 𝜌(𝜔𝑊 , 𝜔𝐾
; 𝑡 , 𝑠)

to denote the theoretical Sibuya’s function evaluated at 𝑡 = 0 when the values of the parameters of

the model are (𝜔𝑊 , 𝜔𝐾). We use the following two-step procedure, where the first step is needed

when additional dependence other than joint death due to catastrophic events is assumed:

1. Estimate the parameters of theoretical joint survival function 𝑆̃(𝑡1 , 𝑡2; 0); call the estimated

parameters 𝜔̂𝑊 .

2. Define the objective function as the sum of squared differences between the theoretical and

empirical Sibuya’s function, that is

𝑙(𝜔𝐾) =
𝑁∑
𝑡=0

𝑀∑
𝑠=0

(
𝜌(𝜔̂𝑊 , 𝜔𝐾

; 𝑡 , 𝑠) − 𝜌
𝐸𝑚𝑝

65,68
(𝑡 , 𝑠)

)
2

.

Then, the calibrated values of the disaster process are defined to be 𝜔̂𝐾
:= arg min𝜔𝐾 𝑙((𝜔𝐾)).

We make two remarks on the first step of the calibration procedure. First, it is only needed when

additional dependence structure other than the Marshall-Olkin type is assumed in the model.

Second, it corresponds to a standard estimation procedure of the joint survival function. The

models based on our approach can be built on top of existing model, thus exploiting the properties
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and the existing estimation procedures. We view this feature of our modelling approach as an

additional advantage.

4.2 Models specifications

We make use of the setup above to calibrate the Sibuya’s function that captures the dependence

structure of the joint mortality phenomenon. We consider two possible alternatives, both subordi-

nators, for the disaster process 𝐾:

- In the first alternative, 𝐾 is Compound Poisson Process with non-negative jumps, i.e., 𝐾𝑡 =∑𝑁𝑡
𝑖=1
𝐷𝑖 ,∀𝑡 ≥ 0 where 𝑁 is a Poisson process with intensity 𝜆 where (𝐷𝑖 , 𝑖 ≥ 1) are i.i.d.

random variables, all exponentially distributed with parameter 𝛾, and independent from 𝑁 .

In this case, we have

E
[
𝑒−𝐾𝑢 |ℱ 𝐾

𝑡

]
= 𝜂𝑃𝑡 𝑒

− 𝜆𝑢
𝛾+1 , for 𝑢 ≥ 𝑡.

For practical purposes, when calibrating the compound Poisson process for 𝐾, we use the

following function:

𝑔𝐶𝑃(𝑢;𝜂, 𝛿) = 𝜂𝑒−𝛿𝑢 ,

𝜂, 𝛾 > 0, so that 𝜔𝐾 = (𝜂, 𝛿), with 𝛿 = 𝜆
𝛾+1

to avoid identification issues between 𝜆 and 𝛾.

- The second alternative is a Gamma process, with Lévy measure 𝜈(𝑥) = 𝛿𝑒−𝜆𝑥
𝑥 , where 𝛿 > 0

governs the arrivals of jumps and reciprocal of 𝜆 > 0 models the size of jumps. In this case,

we have

E
[
𝑒−𝐾𝑢 |ℱ 𝐾

𝑡

]
= 𝜂𝐺𝑡

(
1 + 1

𝜆

)−𝛿𝑢
, for 𝑢 ≥ 𝑡.

For the actual calibration, we use the following function:

𝑔𝐺𝑎𝑚𝑚𝑎(𝑢;𝜂, 𝛿) = 𝜂−𝛿𝑢 ,

with 𝜂 = 1 + 1

1+𝜆 > 1, 𝛿 > 0, and 𝜔𝐾 = (𝜂, 𝛿). We have set the initial level 𝜂𝐺𝑡 = 1 to avoid

identification issues with the parameter 𝜂.

To complete the specification of the models to be calibrated, we need to specify the functional

form of 𝑆̃𝑥𝑦(𝑢, 𝑠, ; 𝑡). Again, we consider two cases. In the first case, we assume independence

between 𝑀 and 𝐹, so that the theoretical Sibuya’s function does not depend on any assumption

about marginal mortality, as equation (4.2) shows. Although this assumption seems to be too

restrictive, it constitutes a useful benchmark for evaluating the appropriateness of more general

models. In the second case, we follow [19], so that

𝑆̃𝑥𝑦(𝑢, 𝑠; 𝑡) = 𝐶
(
𝑆𝑥(𝑢; 𝑡), 𝑆𝑦(𝑠; 𝑡)

)
, (4.3)

being 𝐶(·, ·) an Archimedean copula function [24]. The marginal mortality models for males and
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𝜇𝐹(0) 𝜇𝑀(0) 𝑎𝐹 𝑎𝑀 𝜎𝐹 𝜎𝑀 𝜃

0.00469 0.0204 0.1249 0.081 0.00024 0.0034 0.72003

Table 1: Estimated values of 𝜔𝑊 as reported in [19].

females are instead defined, for ℎ = 𝑥, 𝑦 and 𝑢 ≥ 𝑡, as:3

𝑆ℎ(𝑢; 𝑡) = 𝑒𝜇ℎ (𝑡)𝛽ℎ (𝑢−𝑡), (4.4)

where 𝛽ℎ(𝑢) = 1−𝑒−𝑏ℎ 𝑡
𝑐ℎ+𝑑ℎ 𝑒𝑏ℎ 𝑡

and 𝑏 = −
√
𝑎2

ℎ
+ 2𝜎2

ℎ
, 𝑐ℎ =

𝑏ℎ+𝑎ℎ
2

and 𝑑ℎ =
𝑏ℎ−𝑎ℎ

2
.

The specifications above for the disaster process 𝐾 and the joint survival function 𝑆̃(𝑢, 𝑠; 𝑡) lead

to four different models

- In model 𝑀1, we assume independence between 𝐹 and 𝑀, so that the theoretical Sibuya’s

function does not depend on the choice of the marginal survival functions. In addition, we

assign the compound Poisson process to 𝐾;

- In model 𝑀2 we keep the assumption of independence between 𝐹 and 𝑀, but use the Gamma

process to model catastrophic events;

- In model𝑀3, we introduce a more complex form of dependence for the joint survival function.

In particular, we use (4.3) for the specification of the joint survival probability not considering

catastrophic event, with associated copula function4

𝐶(𝑟, 𝑣) =
(
ln

(
𝑒𝑟

−𝜃 + 𝑒𝑣−𝜃 − 𝑒
))− 1

𝜃
.

The marginal survival probabilities are modeled in line with (4.4). We use the the compound

Poisson process to model 𝐾;

- Finally, model 𝑀4 follows 𝑀3 to model 𝑆̃𝑥,𝑦(·, ·), but uses the Gamma process to represent the

dynamics of 𝐾.

For the calibration of models 𝑀3 and 𝑀4, the first step of the calibration procedure described in

subsection 4.1 is required. This involves the estimation of all the parameters used in the modelling

framework of 𝑆̃(·, ·, 0), that is 𝜔𝑊 = (𝜇𝐹(0), 𝜇𝑀(0), 𝑎𝐹 , 𝑎𝑀 , 𝜎𝐹 , 𝜎𝑀 , 𝜃). The 𝜔𝑊 can be estimated

through the standard procedure described in [19], which in turn uses the Wang and Well ([28])

procedure for the estimation of the copula parameter 𝜃. In the context of this paper, as we use the

same sample used in [19] we skip the estimation 𝜔𝑊 and uses the estimated parameters that can be

found there. For the reader’s convenience, we report in Table 1 the estimated values.

3This functional form of the marginal survival probability comes form assuming a stochastic intensity of

the form 𝑑𝜇ℎ(𝑢) = 𝑎ℎ𝜇ℎ(𝑢) + 𝜎ℎ
√
𝜇ℎ(ℎ)𝑑𝑊ℎ(𝑢), with 𝑎, 𝜎 > 0. A sufficient condition for 𝑆ℎ(𝑢; 𝑡) to be a valid

survival function is 𝜎2 < 2𝑑𝑐. Additional details about this model can be found in [19, 21].

4[19] refers to this model of association as the 4.2.20 Nelsen copula function. Originally proposed in [24], a

detailed study can be found in [27]. The choice of this particular model of association is due to the fact that it

produces the best fit in a range of several Archimedean copulas for the data used in this paper ([19]).
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4.3 Calibration results

We report the calibrated parameters together with the sum of squared error for models 𝑀1-𝑀4 in

Table 2. Figure 2 reports the heatmaps of the theoretical survival functions, while Figure 3 shows

the heatmaps of the relative errors for each model. The relative error for model 𝑚 is defined as

𝑒(𝑡 , 𝑠) = 𝜌
𝐸𝑚𝑝

65,68
(𝑡 ,𝑠)−𝜌𝑚 (𝑡 ,𝑠)
𝜌
𝐸𝑚𝑝

65,68
(𝑡 ,𝑠)

, where 𝜌𝑚(𝑡 , 𝑠) is the theoretical Sibuya’s function of model 𝑚 computed at

the calibrated parameters.

Model Parameters

𝜂 𝛿 Objective value

𝑀1 0.981414 0.005973 0.205518

𝑀2 1.003593 1.106367 0.25250423

𝑀3 0.978167 0.000454 0.15182141

𝑀4 1.008138 1.601355 0.07105885

Table 2: Calibrated parameters and objective values for models 𝑀1-𝑀4.

Our numerical results show the superior performance of models 𝑀3 and 𝑀4 incorporating de-

pendence due to both the common style of life of spouses through copulas and to some catastrophic

event that causes death of both annuitants with respect to models 𝑀1 and 𝑀2 that consider only

the second type of dependence. This is in accordance with recent empirical evidence on the same

dataset ([9, 10]). Our results also suggest that, for the data at hand, the Gamma process produces a

more accurate approximation of empirical Sibyua’s function than the Compound Poisson process.

5 Conclusions

In this paper, we build on the recent literature on credit risk to develop two joint mortality modelling

frameworks that incorporate dependence due to a common fatal event that causes death of both

annuitants. Our approach has an important advantage. Differently to the vast majority of stochastic

mortality models, in our setup the times of death are covered by a sequence of fatal shock times.

The pricing of life-insurance product can be conducted with relative ease. Another advantage over

the recent literature is that our framework accommodates stochastic mortality quite naturally.

In the numerical application we show how to construct models belonging to our classes and

how to calibrate them. This application shows how existing models can be extended to incorporate

dependence due to a common catastrophic events. Calibration of the process that represents the

fatal event can be performed straightforwardly. In terms of calibration performance, our approach

turns out to possess a more than satisfactory goodness of fit. For the data at hand, models that in-

cludes dependence with copula and Marshall-Olkin-type dependence perform best and the Gamma

process produces more accurate results than the Compound Poisson process.
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Figure 2: Theoretical joint survival functions for models 𝑀1-𝑀4.
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Figure 3: Heatmap of relative errors for models 𝑀1-𝑀4.
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